

Challenges in FPGA Design for Complex, High

Performance Space Applications

Chinh H. Le Lynn R. Miles

LeWiz Communications, Inc. NASA Goddard Space Flight Center

Sunnyvale, CA Greenbelt, MD

ChinhL@LeWiz.com Lynn.R.Miles@nasa.gov

Abstract— Field Programmable Gate Array (FPGA)

technology has been used extensively in space applications where

the natural radiation environment presents major challenges to

electronic parts. Commercial FPGA technology is trending to deep

nano-meter silicon processes, which impacts the availability of

radiation resilience FPGA chips. Space systems require long

timeframes for development and launch, and often the electronics

and code may become obsolete or require updating before the

system can be launched. FPGA logic/fabric-size continues to grow

dramatically which allows and practically requires more and more

IP cores to be integrated within a chip. New IP cores and tools will

be needed to enable space designs with commercial FPGA

technology to withstand radiation. This paper discusses the

challenges in designing FPGA-based space systems and potential

open-source and commercial technologies that will be useful to

space application developers. It also references an ongoing FPGA

based space telescope spectrometer design to discuss different

aspects of complex FPGA design with mixed analog and digital

circuits.

Keywords— Field programmable, FPGA, IP core, TMR tool, space

electronics, space chip, spectrometer, space telescope, open source,

mixed signal design

I. INTRODUCTION

As the Field programmable Gate Array (FPGA) industry

moves forward in time, more functionality will be embedded

into individual chip. Larger FPGAs can fit complex processing

arrays, network-on-chip capabilities and peripherals. As more

functionalities are implemented within an FPGA, more on-chip

resources (FPGA look up table, memories, routing channels,

etc.) are required. Space applications using these functionalities

present additional challenges. Intellectual Property (IP) Cores

intended for use in space applications require fault tolerance to

handle radiation effects and upsets, making them more complex

than commercially available IP Cores intended for terrestrial

applications [1]. FPGA vendors provide some IP cores for

common use, but these are controlled and licensed by the

vendors. When modifications of the cores are required, they

cannot be easily modified by the users to suit the application.

Commercial FPGA devices are continuously and rapidly

evolving. A family of FPGA device may become obsolete or

outdated sooner than a space system or telescope can be

launched. So, designing firmware that depends on a vendor

specific FPGA IP core library (or making use of specific

FPGA’s capability, e.g., hard core) may cause the overall

design to become obsolete if the particular device becomes

obsolete. By creating platform-independent firmware, different

FPGAs can be targeted. Designing platform-agnostic Register

Transfer Language (RTL) code costs more time/money/effort

on the front-end but saves time/money/effort later on.

Furthermore, developing firmware in a modular fashion would

enable reuse or quicker adaptation for different applications or

platforms.

There are IP core suppliers available, but these are

generally targeted for the Application Specific Integrated

Circuit (ASIC) development market as that offers better

monetary return on the licensing than the FPGA development

market. For high performance applications, complex ASIC IP

cores are very difficult to re-adapt for FPGA usage. Routing

channels and FPGA memory resources are more restricted on

FPGA devices than ASICs, making timing more difficult to

meet.

Open-source cores provide an interesting option, but useful

ones for space applications would require more complete code

release with test benches, test vectors, and documentation good

enough for user to modify the core to suit space applications

and be able to re-verify. At times, open-source domain

supporting materials can be severely lacking, thus making their

use difficult. This paper discusses the challenges of complex,

high performance FPGA designs for space applications. It

covers available open-source cores and uses a design example

of a subsystem with digital signal processing, hardware-based

accelerators, RISC-V CPU(s), and 100Gbps Ethernet for a

space telescope application to illustrate. Before discussing the

issues, we will provide some background about space

applications and FPGAs used.

II. BACKGROUND

Spacecraft and space-borne science instruments both

commonly utilize FPGAs and IP cores. FPGA based onboard

processing solutions are often favored because they offer high

degrees of design flexibility to suit specific applications, power

efficient solutions, large sets of input and output connections,

and high capacity for parallel processing capabilities. FPGA

chips are ubiquitous across all sizes and classes of spacecraft,

and can be found in both commercial and government satellites,

including everything from flagship missions to relatively low

mailto:ChinhL@LeWiz.com
mailto:Lynn.R.Miles@nasa.gov

cost cubesat applications. The advent and availability of FPGA

IP cores has dramatically decreased non-recurring engineering

costs and design cycle time, and has greatly improved the

accessibility and capability of commercial space industry,

research institutions, and government agencies to implement

sophisticated and interoperable FPGA solutions on new

technology FPGA devices, and space flight missions.

Often times, National Aeronautics and Space

Administration (NASA) FPGA designers encounter the need to

create their own IP cores for a particular application. These

cores are then used in support of a NASA mission, and often

made publicly available via the NASA Technology Transfer

Program. In one such example the Magnetospheric Multiscale

(MMS) mission had a requirement to use the Remote Memory

Access Protocol (RMAP) over its SpaceWire network. At the

time, a suitable commercially available core could not be found,

and so designers on the MMS mission had to create their own

application specific RMAP IP Core [2]. This and many other

useful IP cores that can be found through the NASA Software

Catalog at https://software.nasa.gov/

There are multiple examples and publications that describe

the use of FPGAs in onboard processing systems. The NASA

SpaceCube family of high-performance reconfigurable

processor systems represents one prominent example. One of

the latest iterations in this family, the SpaceCube v3.0 Mini

features the 20nm Xilinx Kintex Ultrascale FPGA combined

with a radiation hardened FPGA monitor to help handle the

radiation effects of space [3]. The inclusion of these FPGA

devices allows the system to be highly reconfigurable and

adaptable for many different space applications, missions, and

platforms, and has greatly contributed to its success. The team

building the SpaceCube v3.0 Mini explored several Triple

Modular Redundancy (TMR) tool options including a built

Xilinx TMR solution with Soft Error Mitigation IP Core, and

the BL-TMR (BYU-LANL TMR Tool).

While NASA has authored and published some IP cores,

that list remains a small subset of all the IP cores that are useful

and necessary for modern space flight FPGA designs. As

we’ve discussed there are many different interface and protocol

IP cores that could be pulled in to suit a specific application.

TMR tools, fault tolerance, and error mitigation tools are

available through both commercial entities and open-source

repositories. And newer high speed device interfaces such as

JESD204B require fairly complicated and timing sensitive IP

cores that would be very challenging for users to create on their

own. Fortunately, there are commercial and open source IP

core solutions available, however it is left up to the users to

intelligently select the cores that offer the level of performance

and fault tolerance required for their application.

FPGA chips are produced mainly by AMD/Xilinx,

Intel/Altera, Microchip/Microsemi, Lattice and others. In the

future, eventually embedded FPGA within-a-chip devices will

be used for space applications. Here, we will focus primarily on

FPGA devices that are commercially available. Xilinx and Intel

offer programmable logic based on SRAM technology. Other

vendors also offer programmable logic based on non-volatile

memory technology. FPGA devices primarily divide into 3

categories: high-end, mid-range and low-end. FPGA chips offer

programmable logic, but also embedded memory blocks,

Digital Signal Processing (DSP) acceleration, hard/soft

processor(s) and peripherals on-chip. The high-end devices

such as Xilinx Virtex Ultrascale+ or Intel Agilex has large

FPGA fabric >4M look-up tables (Xilinx) or >2M logic

elements (Intel) and high speed Serdes >50Gbps performance,

and memory interface supporting various DDRx as well as

High Bandwidth Memory (HBM) technologies. These can be

used to design just about any complex system. The mid-range

devices such as Kintex or Aria chips offer less fabric but at

lower price. The low-end (such as Zynq) has built-in ARM

processors, I/O peripherals as well as programmable logic at

affordable cost.

Xilinx also offers space grade FPGA devices. Its Virtex 5

65nm products were designed for radiation hardened

applications and have been used on Mars Rovers [4]. Newer

Kintex Ultrascale 20nm products offer decent radiation

tolerance up to 120krad of Total Ionizing Dose [5] but still

requires additional mitigations to handle Single Event Effects.

From the industry trend, it’s increasingly likely that future

space grade FPGA offerings will come from a subset of the

commercially available offering. The volume of chips used for

space is very small compare to the volume of commercial

applications.

FPGA boards are also commercially available in various

forms. Certain form factors tend to be favored for compatibility

with space applications. These range from OpenVPX 3U/6U

that are SOSA/VITA/FACE standard compliant to compact

PCI form factor with different high-end, mid-range and low-

end FPGA devices with different timing speeds available.

III. OPEN SOURCE

There are many open-source cores available in Git-Hub

and other places. These can be categorized as follows:

university (or school) created, corporate created, and others.

University created has 2 sub-types: those created by

government grants and those created by the university for

research and/or course work. Open-source created by grants

are usually very useful and more complete. Examples are from

Eth Zurich, Princeton, and Utah. Some are actually validated in

silicon at 22nm (or other silicon node), while some are FPGA

verified. Course work created open-source is generally not very

useful, not optimized, and likely abandoned down the road.

The draw-back of university created open-source is that the

researchers, including the professor(s) managing the projects,

may potentially move on to other jobs and positions. This

created a brain drain and may be lacking in support especially

when the funding ran out.

The Defense Advanced Research Projects Agency

(DARPA) from US Department of Defense (DoD) in recent

years created a couple programs to encourage open-source

development. It funded several universities and companies

(LeWiz Communications included, search for LeWiz on Github

https://software.nasa.gov/

[6]) to develop and released to open source with IP cores, tools

with complete source code and support materials. (In Europe,

European Space Agency and European government also funded

similar efforts recently, e.g., European Processor Initiative).

The second category of open-source cores are created by

corporations. These also have free open-source cores – but not

as many. Some are released under not for commercial purpose,

i.e., can be used for research but not for sale. The support for

these varies, but generally requires licensing or payment for

support or support materials. The third category of cores are

created by individuals for the purpose of selling a small core or

being published to gain consulting benefits. Some are released

with missing files or missing information making their use

limited without paying for consulting cost. Recently,

organizations such as Open Hardware Group started efforts to

create open hardware. But this is relatively in early stages.

Open-source code is vital for the progression of the

programmable logic device community. Open forums are

created specifically to address unique design issues. When

developers are faced with design issues, they post questions in

search of solutions. If multiple people stumble upon the same

documented issue, eventually someone may provide the

answer. As more eyes begin to focus on the subject at hand,

and begin to discuss/communicate, the probability of finding a

solution in open forums would be greater. For newer or

complex devices, FPGA vendors provide limited technical

support and documentation for their software/hardware chip

and tool environments. This can be extremely frustrating when

one has an aggressive deadline to meet on an already

complicated design. FPGA classes and open-source help may

be helpful to FPGA developers especially for large complex

devices such as the AMD Xilinx RFSoC [7] with a mix of

analog and digital peripherals on an FPGA device. The level of

support available for a specific device tends to vary among part

manufacturers and product lines, with some devices being

better supported than others, especially for simpler FPGA

devices. In one example, end users noted that when the

Microchip RTG4 (flash-based FPGA chip) development board

was first released, Field Application Engineers were

immediately available to answer questions and assist with the

hardware verification process.

With the vast availability of code in open source,

developers are challenged to determine which cores are useful

for their application, and which would require more effort to

modify than being useful. A list of known useful cores would

be very helpful to users, but such a useful list would require

serious research and effort to create, validate and maintain.

Maintaining such a list is not easy as the open-source world is

continuously changing. There are a couple of lists that are

known to space hardware developers to be helpful. Examples

include: https://github.com/aolofsson/awesome-opensource-

hardware which lists from accelerators to small cores and

https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_not

ables_221227.pdf which lists soft CPU cores of various types

RISC, CISC CPUs. These are helpful, but they are the tip of the

iceberg. It would require much more coordinated effort than

these to categorize open-source cores to be useful to potential

users of different applications.

IV. SPACE DESIGN METHODS FOR FPGAS

Newer generations of FPGA chips such as Intel Agilex [8],

AMD Ultrascale+ have support for enhancing the reliability of

the device under soft-error conditions. These devices use a soft-

error mitigation controller [9] to detect and correct single bit

error in its configuration memory. The latency for detection,

however, can be very high and may not be useful for all

applications. This latency is a function of the FPGA size and

can be in the range of 9mS to 57mS long. For block Random

Access Memories (RAMs), distributed RAMs, flip-flops, state

machines, and other functional components, other mitigation

design techniques are still required.

RAMs (or memory in general) can be designed with error

detection and correction logic to detect and correct single bit

errors. Scrubbing can further clean out the errors within the

memory before the memory location is used. This is usually

done with large memory blocks such as a Central Processing

Unit (CPU) cache or external memory.

Flip-flops, state machines (or even combinational logic or

buses), tri-modular redundancy (TMR) can be implemented to

mitigate soft-errors [10]. TMR triplicates a function and uses

voting logic to output the correct result. For single bit errors,

the correct result is the matching of 2 out of 3 outputs, i.e.,

majority voting. TMR in combination with scrubbing offers

very high reliability. Logic scrubbing may not always be

possible with dynamic logic involving feedback paths, i.e., state

machines. TMR offers continuous operation upon encountering

errors but also incurs additional logic, routing space, and power.

Thus, different space missions may use different level of TMR.

As examples, for short duration mission in low Earth orbit,

some designs may not implement TMR or only partial TMR in

critical blocks or for flip-flops only. For long duration, deep

space missions, higher level of TMR implementation may be

required. The design decision is very application dependent.

TMR tools are available to assist in TMR implementation.

One open-source example is the SpyDrNet-TMR

https://github.com/byuccl/spydrnet-tmr. Another open-source

example is the BYU-LANL EDIF tool, but it seems lacking in

support. Example of commercial TMR tools include Precision

Hi-Rel (Siemens/Mentor) [11] and Synplify Premier

(Synopsys) [12]. (Xilinx used to offer a TMR Tool for its ISE

design tool but it is no longer available in the newer Vivado

Synthesis Design Suite.) As expected, the commercial tools

offer more features and support more families of FPGA chips

and manufacturers. The tools offer DO-254 design assurance

for safety critical applications. For state machines, they provide

support for 1-hot, binary, or gray code state encoding and safe

finite state machine – where a state machine may be forced into

a reset state or a user-defined error state for error handling.

They also provide support for different TMR implementation

levels: local, distributed or global, where local is for sequential

elements only, distributed is for sequential and combinational

elements, and global implements TMRs for global buffers,

https://github.com/aolofsson/awesome-opensource-hardware
https://github.com/aolofsson/awesome-opensource-hardware
https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_notables_221227.pdf
https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_notables_221227.pdf
https://github.com/byuccl/spydrnet-tmr

sequential and combinatorial circuits [11]. In addition, the tools

support error injection to enable validation of system response

due to single bit error.

Next, we will use a spectrometer design case to discuss

different aspects of complex FPGA design with a mix of analog

and digital (RFSoC design).

V. PRACTICAL USAGE

The figures below show the top-level system diagram (Fig

1) and the detailed algorithm of an RF digital spectrometer (Fig

2). It is a digital system that interfaces with an RF front-end

electronics system and is used to compute the power spectral

density of signals of interest for spectrum identification and

classification of microwave phenomena. The front-end used in

this example is a Microwave Kinetic Inductance Detector

(MKID) Array. It has an array of resonators at specific

frequencies that are excited when a frequency of that same

value is transmitted across that array.

Fig 1: MKID Test Setup for top level system (LUT contains

the RF front end real/imaginary stimuli)

At the beginning of any design is the proof of concept.

This is where the design is proven to be conceptually achievable

given all the necessary and required parameters. In this

scenario, a 3-step verification process was used to verify the

design (MATLAB Simulation → RTL Simulation → Hardware

Validation).

MATLAB Simulation

First, a MATLAB model is designed for each VHDL

module to verify functionality or complex algorithms.

Verifying each module individually makes debugging easier

since any potential bugs can be isolated. Next, a top-level

design connecting each module is used to verify functionality

collectively. The MATLAB model will act as a reference for

the design.

RTL Simulation

After the MATLAB model is designed and verified, a

VHDL algorithm is developed. The same input signal that was

used for the MATLAB simulation should be used for RTL

simulation to create an apples-to-apples comparison. The data

needs to be quantized to the correct bit length and is imported

to the testbench as a text file. The simulation tool (e.g.,

ModelSim, ISim) executes the testbench and exports the

outputs to text files. MATLAB verifies functionality through

post-processing. RTL simulation should match MATLAB

model/hardware outputs within some tolerance. The difference,

if any, should be from rounding and/or truncation. If the results

differ greatly, then something else may be wrong. Fig 3

illustrates this process.

Fig 3: RTL Simulation

Hardware Validation

Once the RTL model is designed and verified through

simulation, firmware is imported onto hardware (RFSoC

FPGA). Analog input stimuli can be sent over Ethernet, read

from a pre-loaded look-up-table (LUT) in memory, or digitized

by an ADC from some front-end analog source (Arbitrary

Waveform Generator (AWG) or Signal Generator). The same

input signal/data that was used for the MATLAB should be

used for sending via Ethernet or the pre-loaded LUT. Firmware

is then loaded onto the FPGA hardware. Output data may be

exported via Ethernet or text files using onboard logic

analyzers. Hardware validation outputs should match

MATLAB model/RTL simulation within some tolerance. Fig 4

illustrates this process.

Fig 2: Detailed Spectrometer Block Diagram

Fig 4: Hardware Verification

With the ever-growing science goals that require broader

bandwidth and improved resolution, scientists are requesting

digital back-end systems to provide high-resolution and wide-

bandwidth for current and future science instruments.

However, the hardware capabilities don’t always agree with the

science requirements/requests. One of the main design

obstacles is how to efficiently sample, process, and analyze the

data from end to end considering hardware limitations such as

FPGA clock rate, FPGA resource utilization, and output data

rate.

Current FPGA technology cannot run at very high clock

rates. Most complex designs would peak at sampling clock rate

(Fs) of <400MHz. Effectively processing ultra-wide bandwidth

input analog signals (>1 GHz) within an FPGA is a challenge.

Modern ADCs use parallelization and require implementation

of JESD204B standard interfaces and IP cores to meet the

requirements of both high channel count and/or wide

instantaneous signal bandwidth applications (Fig 5). Having N

parallel streams lowers Fs by a factor of N or (FS/N). Lower

clock rates use less resources and make timing easier to meet

with speed-limited FPGA devices.

Oversampling will save FPGA resources. Using multiple

clock rates allows resource sharing. A design can use up to N

times (N is the clock factor) as less resources (multipliers,

adders, memory) sampling off the faster clock and cycling

through like a commutator (Fig 6). A commutator can

Fig 6: Commutator

be thought of like a card dealer. If there are four players in a

card game, each player (E0 –EM-1) would receive the cards at a

rate of
𝑭𝑺

𝟒
, whereas the dealer (x(n)) deals the cards at a rate of

Fs. Using Fig 7 as an example, the fast clock is twice the speed

of the slow clock (Fast = 200MHz, Slow = 100MHz). This

would allow one multiplier/adder/logic element to be used

twice in reference to the slower clock and not miss a sample,

ultimately saving resources.

This design combines different techniques and

methodologies to overcome certain hardware design

limitations/challenges while still meeting the increasing

demands of digital back-end readout systems to create a

working end-to-end product. There are parallel streams at both

the ADC/DAC peripherals that take the higher sampled data

stream and generate N smaller data streams at a lower rate.

There’s a LUT that acts as an input stimulus to the RF Front-

End. An Ethernet IP core is required to transmit data out to a

processing system for MATLAB post-processing. The MKID

generates an analog signal that the ADC will digitize, and the

digital spectrometer will process. Open-source code was used

in the Vivado Software Development Kit environment so that

the RFSoC ADC/DAC cores could be used.

Fig 6: Multiple Clock Rates (2-to1 Ratio)

VI. CONCLUSION

FPGA technology will continue to play an important role

in space environment applications for aerospace and defense.

As deep nano-meter silicon technology advances, commercial

FPGAs will be the dominant type of devices available for the

majority of users. We must find ways to use commercial

technology for space exploration. New IP cores with enhanced

capability and functionality will be required to support

tolerance in the radiation environment of space. New, lower

cost tools will be required for FPGA code developers to add

support functions that can withstand radiation effects and be

certified for safety critical applications. As FPGA chips become

more complex and integrated, advanced IP cores will be needed

to support digital and analog mixed signal designs within a

Fig 5: ADC Channelization

single FPGA chip. The role of open-source cores and tools will

also continue to be critical to the space industry. We must find

ways to enable organizations to sustain an open-source business

model.

VII. ACKNOWLEDGMENT

We are very grateful for Christopher Green’s (NASA: GSFC)

contributions to the applications section of this paper. We also

would like to thank Christopher Wilson (NASA: GSFC) for

providing valuable inputs to the TMR tool section.

VIII. REFERENCES

[1] M. Berg and K. LaBel, “Challenges Regarding IP Core Functional
Reliability,” Microelectronics Reliability and Qualification Working
Meeting 2017.

[2] O. Haddad “Remote Memory Access Protocol Target Node Intellectual
Property,” NASA Tech Briefs, August 2013

[3] C. Brewer, N. Franconi, R. Ripley, A. Geist, T. Wise, S. Sabogal, G.
Crum, S. Heyward, C. Wilson, “NASA SpaceCube Intelligent Multi-
Purpose System for Enabling Remote Sensing, Communication, and
Navigation in Mission Architectures,” 34th Annual Small Satellite
Conference, 2020

[4] A. E. Johnson, S. Aaron, H. Ansari, C. Bergh, H. Bourdu, J. Butler, J.
Chang, R. Cheng, Y. Cheng, K. Clark, D. Clouse, R. Donnelly, K.
Gostelow, W. Jay, M. Jordan, S. Mohan, J. F. Montgomery, J. Morrison,
S. Schroeder, B. Shenker, G. Sun, N. Trawny, C. Umsted, G. Vaughan,
M. Ravine, J. Schaffner, J. M. Shamah, J. Zheng, “Mars 2020 Lander
Vision System Flight Performance,” American Institute of Aeronautics
and Astronautics SciTech 2022 Forum

[5] P. Maillard, J. Barton, M. J. Hart, Y. P. Chen, M. L. Voogel, “Total
Ionizing Dose and Single-Events characterization of Xilinx 20nm Kintex
UltraScale™,” 2019 19th European Conference on Radiation and Its
Effects on Components and Systems (RADECS)

[6] LeWiz’s open source releases, https://github.com/lewiz-support, LeWiz
Communications, Inc., 2/2023

[7] Zynq UltraScale+ RFSoC Data Sheet: Overview (DS889 v1.13),
AMD/Xilinx, January 7, 2022

[8] Intel® Agilex™ SEU Mitigation User Guide (UG-20253), Intel, 2022

[9] LogiCORE IP Soft Error Mitigation Controller v3.1 Product Specification
(DS796), AMD/Xilinx, October 19, 2011

[10] Precision® Hi-Rel Advanced FPGA Synthesis Datasheet,
Siemens/Mentor Graphic, 2018

[11] Wirthlin, M., “High-Reliability FPGA-Based Systems: Space, High-
Energy Physics, and Beyond,” Proceedings of the IEEE, vol. 103, no. 3,
Mar. 2015, pp. 379-389.

[12] FPGA Design Solution for High-Reliability Applications (Brochure),
Synopsys, Inc. 2015

https://github.com/lewiz-support

