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Abstract— Field Programmable Gate Array (FPGA) 

technology has been used extensively in space applications where 

the natural radiation environment presents major challenges to 

electronic parts. Commercial FPGA technology is trending to deep 

nano-meter silicon processes, which impacts the availability of 

radiation resilience FPGA chips.  Space systems require long 

timeframes for development and launch, and often the electronics 

and code may become obsolete or require updating before the 

system can be launched. FPGA logic/fabric-size continues to grow 

dramatically which allows and practically requires more and more 

IP cores to be integrated within a chip.  New IP cores and tools will 

be needed to enable space designs with commercial FPGA 

technology to withstand radiation. This paper discusses the 

challenges in designing FPGA-based space systems and potential 

open-source and commercial technologies that will be useful to 

space application developers. It also references an ongoing FPGA 

based space telescope spectrometer design to discuss different 

aspects of complex FPGA design with mixed analog and digital 

circuits. 
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I. INTRODUCTION  

As the Field programmable Gate Array (FPGA) industry 

moves forward in time, more functionality will be embedded 

into individual chip. Larger FPGAs can fit complex processing 

arrays, network-on-chip capabilities and peripherals. As more 

functionalities are implemented within an FPGA, more on-chip 

resources (FPGA look up table, memories, routing channels, 

etc.) are required. Space applications using these functionalities 

present additional challenges.  Intellectual Property (IP) Cores 

intended for use in space applications require fault tolerance to 

handle radiation effects and upsets, making them more complex 

than commercially available IP Cores intended for terrestrial 

applications [1].  FPGA vendors provide some IP cores for 

common use, but these are controlled and licensed by the 

vendors.  When modifications of the cores are required, they 

cannot be easily modified by the users to suit the application.   

Commercial FPGA devices are continuously and rapidly 

evolving. A family of FPGA device may become obsolete or 

outdated sooner than a space system or telescope can be 

launched.  So, designing firmware that depends on a vendor 

specific FPGA IP core library (or making use of specific 

FPGA’s capability, e.g., hard core) may cause the overall 

design to become obsolete if the particular device becomes 

obsolete.  By creating platform-independent firmware, different 

FPGAs can be targeted.  Designing platform-agnostic Register 

Transfer Language (RTL) code costs more time/money/effort 

on the front-end but saves time/money/effort later on. 

Furthermore, developing firmware in a modular fashion would 

enable reuse or quicker adaptation for different applications or 

platforms. 

There are IP core suppliers available, but these are 

generally targeted for the Application Specific Integrated 

Circuit (ASIC) development market as that offers better 

monetary return on the licensing than the FPGA development 

market.  For high performance applications, complex ASIC IP 

cores are very difficult to re-adapt for FPGA usage.  Routing 

channels and FPGA memory resources are more restricted on 

FPGA devices than ASICs, making timing more difficult to 

meet.  

Open-source cores provide an interesting option, but useful 

ones for space applications would require more complete code 

release with test benches, test vectors, and documentation good 

enough for user to modify the core to suit space applications 

and be able to re-verify.  At times, open-source domain 

supporting materials can be severely lacking, thus making their 

use difficult.  This paper discusses the challenges of complex, 

high performance FPGA designs for space applications. It 

covers available open-source cores and uses a design example 

of a subsystem with digital signal processing, hardware-based 

accelerators, RISC-V CPU(s), and 100Gbps Ethernet for a 

space telescope application to illustrate.  Before discussing the 

issues, we will provide some background about space 

applications and FPGAs used. 

II. BACKGROUND 

Spacecraft and space-borne science instruments both 

commonly utilize FPGAs and IP cores.  FPGA based onboard 

processing solutions are often favored because they offer high 

degrees of design flexibility to suit specific applications, power 

efficient solutions, large sets of input and output connections, 

and high capacity for parallel processing capabilities.  FPGA 

chips are ubiquitous across all sizes and classes of spacecraft, 

and can be found in both commercial and government satellites, 

including everything from flagship missions to relatively low 
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cost cubesat applications.  The advent and availability of FPGA 

IP cores has dramatically decreased non-recurring engineering 

costs and design cycle time, and has greatly improved the 

accessibility and capability of commercial space industry, 

research institutions, and government agencies to implement 

sophisticated and interoperable FPGA solutions on new 

technology FPGA devices, and space flight missions.   

Often times, National Aeronautics and Space 

Administration (NASA) FPGA designers encounter the need to 

create their own IP cores for a particular application.  These 

cores are then used in support of a NASA mission, and often 

made publicly available via the NASA Technology Transfer 

Program. In one such example the Magnetospheric Multiscale 

(MMS) mission had a requirement to use the Remote Memory 

Access Protocol (RMAP) over its SpaceWire network.  At the 

time, a suitable commercially available core could not be found, 

and so designers on the MMS mission had to create their own 

application specific RMAP IP Core [2].  This and many other 

useful IP cores that can be found through the NASA Software 

Catalog at https://software.nasa.gov/  

There are multiple examples and publications that describe 

the use of FPGAs in onboard processing systems.  The NASA 

SpaceCube family of high-performance reconfigurable 

processor systems represents one prominent example.  One of 

the latest iterations in this family, the SpaceCube v3.0 Mini 

features the 20nm Xilinx Kintex Ultrascale FPGA combined 

with a radiation hardened FPGA monitor to help handle the 

radiation effects of space [3].  The inclusion of these FPGA 

devices allows the system to be highly reconfigurable and 

adaptable for many different space applications, missions, and 

platforms, and has greatly contributed to its success. The team 

building the SpaceCube v3.0 Mini explored several Triple 

Modular Redundancy (TMR) tool options including a built 

Xilinx TMR solution with Soft Error Mitigation IP Core, and 

the BL-TMR (BYU-LANL TMR Tool).   

While NASA has authored and published some IP cores, 

that list remains a small subset of all the IP cores that are useful 

and necessary for modern space flight FPGA designs.  As 

we’ve discussed there are many different interface and protocol 

IP cores that could be pulled in to suit a specific application. 

TMR tools, fault tolerance, and error mitigation tools are 

available through both commercial entities and open-source 

repositories. And newer high speed device interfaces such as 

JESD204B require fairly complicated and timing sensitive IP 

cores that would be very challenging for users to create on their 

own.  Fortunately, there are commercial and open source IP 

core solutions available, however it is left up to the users to 

intelligently select the cores that offer the level of performance 

and fault tolerance required for their application. 

FPGA chips are produced mainly by AMD/Xilinx, 

Intel/Altera, Microchip/Microsemi, Lattice and others. In the 

future, eventually embedded FPGA within-a-chip devices will 

be used for space applications. Here, we will focus primarily on 

FPGA devices that are commercially available. Xilinx and Intel 

offer programmable logic based on SRAM technology. Other 

vendors also offer programmable logic based on non-volatile 

memory technology. FPGA devices primarily divide into 3 

categories: high-end, mid-range and low-end. FPGA chips offer 

programmable logic, but also embedded memory blocks, 

Digital Signal Processing (DSP) acceleration, hard/soft 

processor(s) and peripherals on-chip. The high-end devices 

such as Xilinx Virtex Ultrascale+ or Intel Agilex has large 

FPGA fabric >4M look-up tables (Xilinx) or >2M logic 

elements (Intel) and high speed Serdes >50Gbps performance, 

and memory interface supporting various DDRx as well as 

High Bandwidth Memory (HBM) technologies. These can be 

used to design just about any complex system. The mid-range 

devices such as Kintex or Aria chips offer less fabric but at 

lower price. The low-end (such as Zynq) has built-in ARM 

processors, I/O peripherals as well as programmable logic at 

affordable cost. 

Xilinx also offers space grade FPGA devices. Its Virtex 5 

65nm products were designed for radiation hardened 

applications and have been used on Mars Rovers [4]. Newer 

Kintex Ultrascale 20nm products offer decent radiation 

tolerance up to 120krad of Total Ionizing Dose [5] but still 

requires additional mitigations to handle Single Event Effects. 

From the industry trend, it’s increasingly likely that future 

space grade FPGA offerings will come from a subset of the 

commercially available offering. The volume of chips used for 

space is very small compare to the volume of commercial 

applications. 

FPGA boards are also commercially available in various 

forms. Certain form factors tend to be favored for compatibility 

with space applications. These range from OpenVPX 3U/6U 

that are SOSA/VITA/FACE standard compliant to compact 

PCI form factor with different high-end, mid-range and low-

end FPGA devices with different timing speeds available. 

III. OPEN SOURCE 

There are many open-source cores available in Git-Hub 

and other places. These can be categorized as follows: 

university (or school) created, corporate created, and others. 

University created has 2 sub-types: those created by 

government grants and those created by the university for 

research and/or course work.  Open-source created by grants 

are usually very useful and more complete.  Examples are from 

Eth Zurich, Princeton, and Utah. Some are actually validated in 

silicon at 22nm (or other silicon node), while some are FPGA 

verified.  Course work created open-source is generally not very 

useful, not optimized, and likely abandoned down the road.  

The draw-back of university created open-source is that the 

researchers, including the professor(s) managing the projects, 

may potentially move on to other jobs and positions.  This 

created a brain drain and may be lacking in support especially 

when the funding ran out. 

The Defense Advanced Research Projects Agency 

(DARPA) from US Department of Defense (DoD) in recent 

years created a couple programs to encourage open-source 

development. It funded several universities and companies 

(LeWiz Communications included, search for LeWiz on Github 
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[6]) to develop and released to open source with IP cores, tools 

with complete source code and support materials. (In Europe, 

European Space Agency and European government also funded 

similar efforts recently, e.g., European Processor Initiative).   

The second category of open-source cores are created by 

corporations. These also have free open-source cores – but not 

as many. Some are released under not for commercial purpose, 

i.e., can be used for research but not for sale. The support for 

these varies, but generally requires licensing or payment for 

support or support materials.  The third category of cores are 

created by individuals for the purpose of selling a small core or 

being published to gain consulting benefits. Some are released 

with missing files or missing information making their use 

limited without paying for consulting cost.  Recently, 

organizations such as Open Hardware Group started efforts to 

create open hardware. But this is relatively in early stages. 

Open-source code is vital for the progression of the 

programmable logic device community.  Open forums are 

created specifically to address unique design issues. When 

developers are faced with design issues, they post questions in 

search of solutions.  If multiple people stumble upon the same 

documented issue, eventually someone may provide the 

answer.  As more eyes begin to focus on the subject at hand, 

and begin to discuss/communicate, the probability of finding a 

solution in open forums would be greater.  For newer or 

complex devices, FPGA vendors provide limited technical 

support and documentation for their software/hardware chip 

and tool environments.  This can be extremely frustrating when 

one has an aggressive deadline to meet on an already 

complicated design.  FPGA classes and open-source help may 

be helpful to FPGA developers especially for large complex 

devices such as the AMD Xilinx RFSoC [7] with a mix of 

analog and digital peripherals on an FPGA device. The level of 

support available for a specific device tends to vary among part 

manufacturers and product lines, with some devices being 

better supported than others, especially for simpler FPGA 

devices. In one example, end users noted that when the 

Microchip RTG4 (flash-based FPGA chip) development board 

was first released, Field Application Engineers were 

immediately available to answer questions and assist with the 

hardware verification process.  

With the vast availability of code in open source, 

developers are challenged to determine which cores are useful 

for their application, and which would require more effort to 

modify than being useful. A list of known useful cores would 

be very helpful to users, but such a useful list would require 

serious research and effort to create, validate and maintain. 

Maintaining such a list is not easy as the open-source world is 

continuously changing. There are a couple of lists that are 

known to space hardware developers to be helpful. Examples 

include: https://github.com/aolofsson/awesome-opensource-

hardware which lists from accelerators to small cores and 

https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_not

ables_221227.pdf which lists soft CPU cores of various types 

RISC, CISC CPUs. These are helpful, but they are the tip of the 

iceberg. It would require much more coordinated effort than 

these to categorize open-source cores to be useful to potential 

users of different applications. 

IV. SPACE DESIGN METHODS FOR FPGAS 

Newer generations of FPGA chips such as Intel Agilex [8], 

AMD Ultrascale+ have support for enhancing the reliability of 

the device under soft-error conditions. These devices use a soft-

error mitigation controller [9] to detect and correct single bit 

error in its configuration memory. The latency for detection, 

however, can be very high and may not be useful for all 

applications. This latency is a function of the FPGA size and 

can be in the range of 9mS to 57mS long. For block Random 

Access Memories (RAMs), distributed RAMs, flip-flops, state 

machines, and other functional components, other mitigation 

design techniques are still required. 

RAMs (or memory in general) can be designed with error 

detection and correction logic to detect and correct single bit 

errors. Scrubbing can further clean out the errors within the 

memory before the memory location is used. This is usually 

done with large memory blocks such as a Central Processing 

Unit (CPU) cache or external memory. 

Flip-flops, state machines (or even combinational logic or 

buses), tri-modular redundancy (TMR) can be implemented to 

mitigate soft-errors [10]. TMR triplicates a function and uses 

voting logic to output the correct result. For single bit errors, 

the correct result is the matching of 2 out of 3 outputs, i.e., 

majority voting. TMR in combination with scrubbing offers 

very high reliability. Logic scrubbing may not always be 

possible with dynamic logic involving feedback paths, i.e., state 

machines. TMR offers continuous operation upon encountering 

errors but also incurs additional logic, routing space, and power. 

Thus, different space missions may use different level of TMR. 

As examples, for short duration mission in low Earth orbit, 

some designs may not implement TMR or only partial TMR in 

critical blocks or for flip-flops only. For long duration, deep 

space missions, higher level of TMR implementation may be 

required. The design decision is very application dependent.  

TMR tools are available to assist in TMR implementation. 

One open-source example is the SpyDrNet-TMR 

https://github.com/byuccl/spydrnet-tmr. Another open-source 

example is the BYU-LANL EDIF tool, but it seems lacking in 

support. Example of commercial TMR tools include Precision 

Hi-Rel (Siemens/Mentor) [11] and Synplify Premier 

(Synopsys) [12]. (Xilinx used to offer a TMR Tool for its ISE 

design tool but it is no longer available in the newer Vivado 

Synthesis Design Suite.) As expected, the commercial tools 

offer more features and support more families of FPGA chips 

and manufacturers. The tools offer DO-254 design assurance 

for safety critical applications. For state machines, they provide 

support for 1-hot, binary, or gray code state encoding and safe 

finite state machine – where a state machine may be forced into 

a reset state or a user-defined error state for error handling. 

They also provide support for different TMR implementation 

levels: local, distributed or global, where local is for sequential 

elements only, distributed is for sequential and combinational 

elements, and global implements TMRs for global buffers, 

https://github.com/aolofsson/awesome-opensource-hardware
https://github.com/aolofsson/awesome-opensource-hardware
https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_notables_221227.pdf
https://github.com/jimbrake/cpu_soft_cores/blob/main/uP_notables_221227.pdf
https://github.com/byuccl/spydrnet-tmr


sequential and combinatorial circuits [11]. In addition, the tools 

support error injection to enable validation of system response 

due to single bit error. 

Next, we will use a spectrometer design case to discuss 

different aspects of complex FPGA design with a mix of analog 

and digital (RFSoC design). 

V. PRACTICAL USAGE 

The figures below show the top-level system diagram (Fig 

1) and the detailed algorithm of an RF digital spectrometer (Fig 

2).  It is a digital system that interfaces with an RF front-end 

electronics system and is used to compute the power spectral 

density of signals of interest for spectrum identification and 

classification of microwave phenomena.  The front-end used in 

this example is a Microwave Kinetic Inductance Detector 

(MKID) Array. It has an array of resonators at specific 

frequencies that are excited when a frequency of that same 

value is transmitted across that array. 

 

 
Fig 1: MKID Test Setup for top level system (LUT contains 

the RF front end real/imaginary stimuli) 

 

At the beginning of any design is the proof of concept.  

This is where the design is proven to be conceptually achievable 

given all the necessary and required parameters. In this 

scenario, a 3-step verification process was used to verify the 

design (MATLAB Simulation → RTL Simulation → Hardware 

Validation).    

MATLAB Simulation 

First, a MATLAB model is designed for each VHDL 

module to verify functionality or complex algorithms.  

Verifying each module individually makes debugging easier 

since any potential bugs can be isolated.  Next, a top-level 

design connecting each module is used to verify functionality 

collectively.  The MATLAB model will act as a reference for 

the design.   

RTL Simulation 

After the MATLAB model is designed and verified, a 

VHDL algorithm is developed.  The same input signal that was 

used for the MATLAB simulation should be used for RTL 

simulation to create an apples-to-apples comparison. The data 

needs to be quantized to the correct bit length and is imported 

to the testbench as a text file.  The simulation tool (e.g., 

ModelSim, ISim) executes the testbench and exports the 

outputs to text files. MATLAB verifies functionality through 

post-processing.  RTL simulation should match MATLAB 

model/hardware outputs within some tolerance. The difference, 

if any, should be from rounding and/or truncation.  If the results 

differ greatly, then something else may be wrong. Fig 3 

illustrates this process. 

 

 
Fig 3: RTL Simulation 

Hardware Validation 

Once the RTL model is designed and verified through 

simulation, firmware is imported onto hardware (RFSoC 

FPGA).  Analog input stimuli can be sent over Ethernet, read 

from a pre-loaded look-up-table (LUT) in memory, or digitized 

by an ADC from some front-end analog source (Arbitrary 

Waveform Generator (AWG) or Signal Generator).  The same 

input signal/data that was used for the MATLAB should be 

used for sending via Ethernet or the pre-loaded LUT. Firmware 

is then loaded onto the FPGA hardware.  Output data may be 

exported via Ethernet or text files using onboard logic 

analyzers.  Hardware validation outputs should match 

MATLAB model/RTL simulation within some tolerance. Fig 4 

illustrates this process. 

Fig 2: Detailed Spectrometer Block Diagram 



 
Fig 4: Hardware Verification 

With the ever-growing science goals that require broader 

bandwidth and improved resolution, scientists are requesting 

digital back-end systems to provide high-resolution and wide-

bandwidth for current and future science instruments.  

However, the hardware capabilities don’t always agree with the 

science requirements/requests. One of the main design 

obstacles is how to efficiently sample, process, and analyze the 

data from end to end considering hardware limitations such as 

FPGA clock rate, FPGA resource utilization, and output data 

rate.  

Current FPGA technology cannot run at very high clock 

rates. Most complex designs would peak at sampling clock rate 

(Fs) of <400MHz. Effectively processing ultra-wide bandwidth 

input analog signals (>1 GHz) within an FPGA is a challenge.  

Modern ADCs use parallelization and require implementation 

of JESD204B standard interfaces and IP cores to meet the 

requirements of both high channel count and/or wide 

instantaneous signal bandwidth applications (Fig 5). Having N 

parallel streams lowers Fs by a factor of N or (FS/N).  Lower 

clock rates use less resources and make timing easier to meet 

with speed-limited FPGA devices.  

 

Oversampling will save FPGA resources. Using multiple 

clock rates allows resource sharing.  A design can use up to N 

times (N is the clock factor) as less resources (multipliers, 

adders, memory) sampling off the faster clock and cycling 

through like a commutator (Fig 6).  A commutator can  

 
Fig 6: Commutator 

be thought of like a card dealer.  If there are four players in a 

card game, each player (E0 –EM-1) would receive the cards at a 

rate of 
𝑭𝑺

𝟒
, whereas the dealer (x(n)) deals the cards at a rate of 

Fs. Using Fig 7 as an example, the fast clock is twice the speed 

of the slow clock (Fast = 200MHz, Slow = 100MHz). This 

would allow one multiplier/adder/logic element to be used 

twice in reference to the slower clock and not miss a sample, 

ultimately saving resources.   

This design combines different techniques and 

methodologies to overcome certain hardware design 

limitations/challenges while still meeting the increasing 

demands of digital back-end readout systems to create a 

working end-to-end product. There are parallel streams at both 

the ADC/DAC peripherals that take the higher sampled data 

stream and generate N smaller data streams at a lower rate.  

There’s a LUT that acts as an input stimulus to the RF Front-

End.  An Ethernet IP core is required to transmit data out to a 

processing system for MATLAB post-processing.  The MKID 

generates an analog signal that the ADC will digitize, and the 

digital spectrometer will process.  Open-source code was used 

in the Vivado Software Development Kit environment so that 

the RFSoC ADC/DAC cores could be used.   

  

 
Fig 6: Multiple Clock Rates (2-to1 Ratio) 

VI. CONCLUSION 

FPGA technology will continue to play an important role 

in space environment applications for aerospace and defense. 

As deep nano-meter silicon technology advances, commercial 

FPGAs will be the dominant type of devices available for the 

majority of users. We must find ways to use commercial 

technology for space exploration. New IP cores with enhanced 

capability and functionality will be required to support 

tolerance in the radiation environment of space. New, lower 

cost tools will be required for FPGA code developers to add 

support functions that can withstand radiation effects and be 

certified for safety critical applications. As FPGA chips become 

more complex and integrated, advanced IP cores will be needed 

to support digital and analog mixed signal designs within a 

Fig 5: ADC Channelization 



single FPGA chip. The role of open-source cores and tools will 

also continue to be critical to the space industry.  We must find 

ways to enable organizations to sustain an open-source business 

model. 
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